

Brigham and Women's Hospital Founding Member, Mass General Brigham

Dapagliflozin in Patients With Heart Failure With and Without Peripheral Artery Disease

A patient-level pooled meta-analysis of DAPA-HF and DELIVER

Jawad Haider Butt, MD

BHF Cardiovascular Research Centre, University of Glasgow, United Kingdom

Department of Cardiology, Rigshospitalet, Copenhagen University Hospital, Denmark

On behalf of the DAPA-HF and DELIVER Committees and Investigators

Disclosures

- Advisory board honoraria: AstraZeneca; Bayer
- Consultant honoraria: AstraZeneca; Novartis
- Travel grants: AstraZeneca

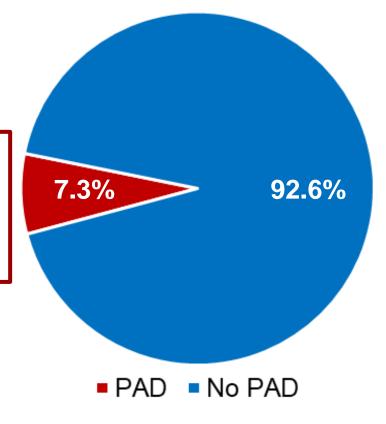
Introduction: PAD and HF

- Patients with HF and PAD have worse clinical outcomes than those with HF and no PAD
- Since the CANVAS trials reported a higher rate of amputations with canagliflozin, there has been a concern about the safety of SGLT2 inhibitors in patients with PAD
- Although these findings have not been replicated with other SGLT2 inhibitors or in other populations, this concern remains, especially in individuals with HF
 - Diuretics, an integral part of HF management, have also been associated with an elevated risk of amputations

Objective

To examine the efficacy and safety of dapagliflozin, compared with placebo, in patients with and without PAD across the range of LVEF

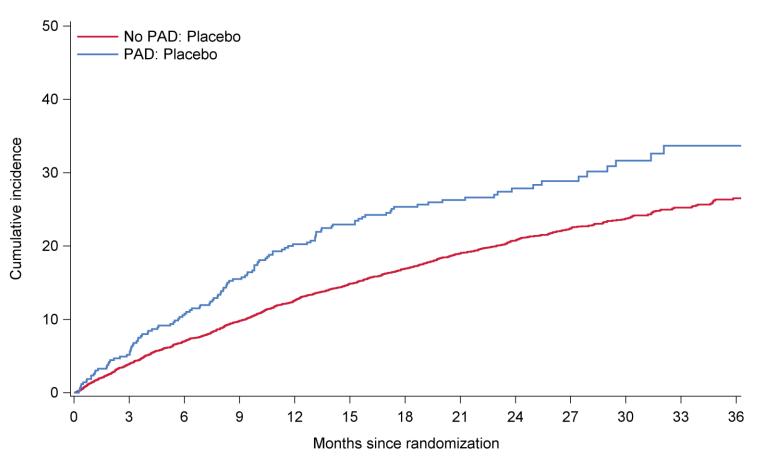
DAPA-HF and DELIVER trial designs


<u>DAPA-HF</u> LVEF ≤40% NYHA II-IV Elevated NT-proBNP Guideline-recommended therapy DELIVER LVEF >40% NYHA II-IV Elevated NT-proBNP Structural heart disease

PAD status at baseline

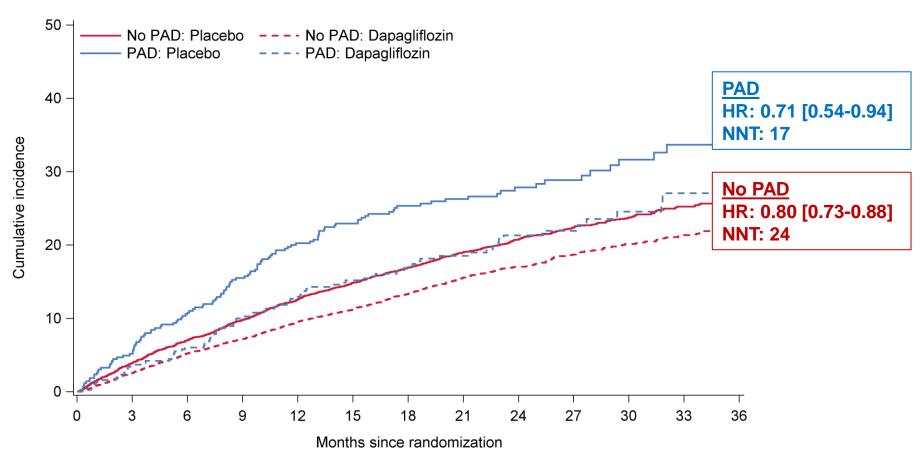
Investigator-reported history of:

- peripheral arterial occlusive disease
- prior revascularization of a peripheral artery
- prior stent insertion in a peripheral artery


Selected baseline characteristics by PAD status

	No PAD	PAD	P-value	
	N=10196 N=809		I -value	
Age (years), mean	69	71	<0.001	
Female sex, %	36	24	<0.001	
eGFR (mL/min/1.73m ²), mean	63	59	<0.001	
NT-proBNP (pg/mL), median	1172	1269	0.12	
Duration of HF >5 years, %	32	38	0.008	
LVEF (%), mean	44	44	0.23	
NYHA class III/IV, %	28	31	0.11	
KCCQ-TSS, mean	72	69	<0.001	

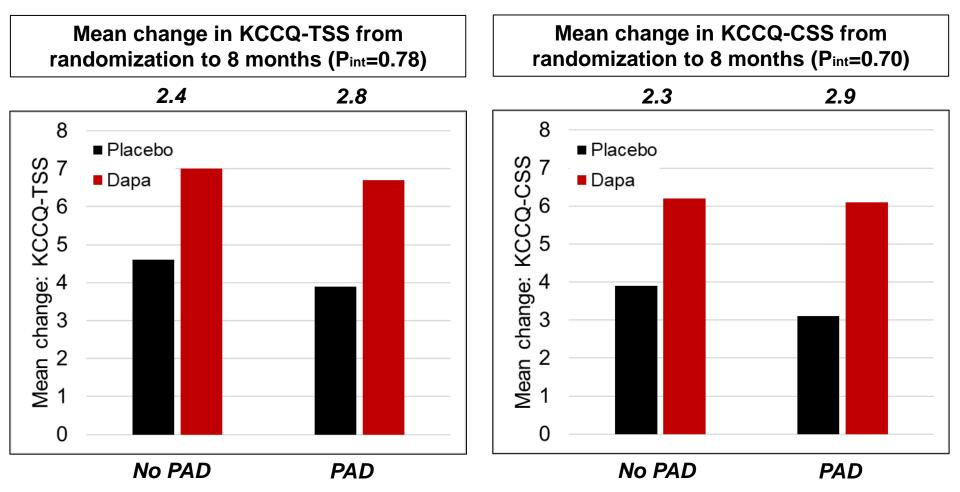
Selected baseline characteristics by PAD status


	No PAD N=10196	PAD N=809	P-value
Current/former smoking, %	49	68	<0.001
Hospitalization for HF, %	43	44	0.61
Atrial fibrillation, %	48	43	0.002
Hypertension, %	82	90	<0.001
Stroke, %	9	17	<0.001
MI or coronary revascularization, %	44	73	<0.001
Type 2 diabetes, %	43	55	<0.001

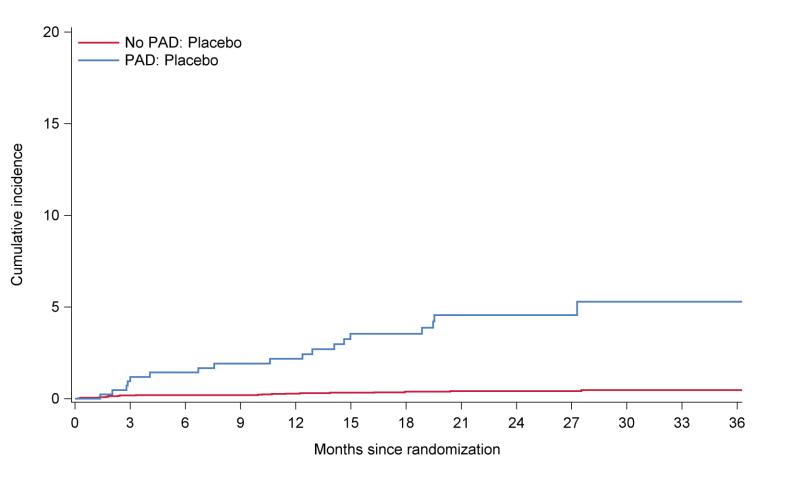
Treatment effect by PAD status: Primary outcome

NNT: Number of patients needed to be treated with dapagliflozin to prevent one event over the median follow-up

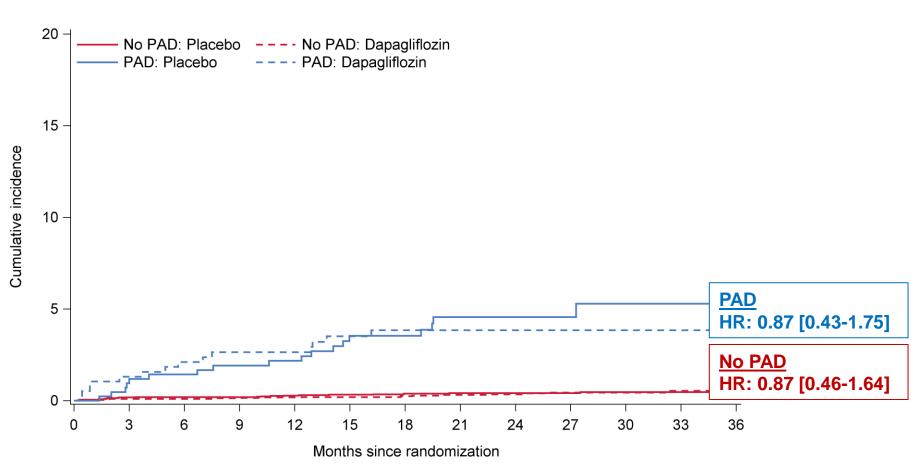
Treatment effect by PAD status: Primary outcome


NNT: Number of patients needed to be treated with dapagliflozin to prevent one event over the median follow-up

Treatment effect by PAD status: Clinical outcomes


		Hazard or rate ratio (95% Cl)	Interaction P-value
Worsening HF or CV death			0.39
No PAD	H=-1	0.80 (0.73 - 0.88)	
PAD		0.71 (0.54 - 0.94)	
Worsening HF			0.02
No PAD	H - -1	0.78 (0.70 - 0.87)	
PAD		0.50 (0.34 - 0.72)	
Cardiovascular death			0.38
No PAD	⊢ ∎→	0.85 (0.75 - 0.96)	
PAD	F	1.01 (0.70 - 1.47)	
All-cause death			0.26
No PAD	H - -1	0.89 (0.80 - 0.98)	
PAD	F	1.06 (0.78 - 1.44)	
Total HF hospitalizations and CV death			0.21
No PAD	H - -1	0.78 (0.70 - 0.87)	
PAD	—	0.63 (0.46 - 0.87)	
	0.3 0.6 1 1.5	2.5	
Favors	dapagliflozin Favoi	rs placebo	

Undetermined causes of death were considered cardiovascular death; worsening HF was defined as an unplanned HF hospitalization or an urgent HF visit requiring intravenous diuretics.


Treatment effect by PAD status: Health status and symptoms

Treatment effect by PAD status: Amputation

Treatment effect by PAD status: Amputation

Amputations and triggering conditions

	No PAD		PAD	
	Placebo	Dapa	Placebo	Dapa
	N=5067	N=5112	N=427	N=381
Amputation, N	20	18	18	14
Conditions triggering amputation				
Infection, N	18	11	11	11
Acute limb ischaemia, N	2	2	4	2
Chronic limb ischaemia, N	1	6	6	4

Conditions triggering amputation were investigator-reported, and more than one category could be selected.

Treatment discontinuation and adverse events

	No PAD		PAD		
	Placebo	Dapa	Placebo	Dapa	D
% of patients	N=5067	N=5112	N=427	N=381	P-value*
Discontinuation for any reason	12.3	12.3	17.8	16.8	0.72
Discontinuation due to adverse event	5.1	5.1	9.4	8.4	0.61
Volume depletion**	3.5	3.9	4.9	7.3	0.31
Renal adverse event**	4.5	4.0	8.2	9.2	0.35
Major hypoglycemia	0.2	0.2	0.5	0.0	N/A
Diabetic ketoacidosis	0.0	0.1	0.0	0.5	N/A

*P-value is for interaction between PAD status and treatment effect on the occurrence of adverse events.

**Any serious adverse event or adverse event that led to discontinuation in DELIVER.

Conclusions: Dapagliflozin in patients with HF with and without PAD

- Dapagliflozin reduced the risk of adverse clinical outcomes, across the range of LVEF, to a similar extent in patients with and without PAD
- Dapagliflozin improved symptoms and quality of life in both patients with and without PAD
- Dapagliflozin was safe and well-tolerated irrespective of PAD status
- Dapagliflozin did not increase the risk of amputation regardless of PAD status

European Heart Journal (2023) **00**, 1–15 European Society https://doi.org/10.1093/eurheartj/ehad276 of Cardiology FASTTRACK CLINICAL RESEARCH

Heart failure and cardiomyopathies

Heart failure, peripheral artery disease, and dapagliflozin: a patient-level meta-analysis of DAPA-HF and DELIVER

Jawad H. Butt^{1,2}, Toru Kondo^{1,3}, Mingming Yang¹, Pardeep S. Jhund¹, Kieran F. Docherty¹, Muthiah Vaduganathan ⁶, Brian L. Claggett⁴, Adrian F. Hernandez⁵, Carolyn S.P. Lam ⁶, Silvio E. Inzucchi⁷, Felipe A. Martinez⁸, Rudolf A. de Boer⁹, Mikhail N. Kosiborod¹⁰, Akshay S. Desai⁴, Lars Køber³, Piotr Ponikowski¹¹, Marc S. Sabatine¹², Sanjiv J. Shah¹³, Natalia Zaozerska¹⁴, Ulrica Wilderäng¹⁴, Olof Bengtsson ⁶, ¹⁴, Scott D. Solomon⁴, and John J.V. McMurray ⁶

¹British Heart Foundation Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK; ²Department of Cardiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; ³Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan; ⁴Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; ⁵Duke University Medical Center, Durham, NC, USA; ⁶National Heart Centre Singapore and Duke-National University of Singapore, Singapore; ⁷Yale School of Medicine, New Haven, CT, USA; ⁸University of Cordoba, Cordoba, Argentina; ⁹Erasmus Medical Center, Rotterdam, The Netherlands; ¹⁰Saint Luke's Mid America Heart Institute, Kansas City, MO, USA; ¹¹Department of Heart Disease, Wroclaw Medical University, Wroclaw, Poland; ¹²TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, USA; ¹³Northwestern University Feinberg School of Medicine, Chicago, IL, USA; and ¹⁴Late-Stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden