Initial Decline in Estimated Glomerular Filtration Rate After Initiation of Dapagliflozin in Patients With Heart Failure and Mildly Reduced or Preserved Reduced Ejection Fraction

Finnian R. Mc Causland, Brian L. Claggett, Muthiah Vaduganathan, Akshay Desai, Pardeep Jhund, Orly Vardeny, James C. Fang, Rudolf A. de Boer, Kieran F. Docherty, Adrian F. Hernandez, Silvio E. Inzucchi, Mikhail N. Kosiborod, Carolyn S.P. Lam, Felipe Martinez, Jose F. Kerr Saraiva, Martina M. McGrath, Sanjiv J. Shah, Subodh Verma, Anna Maria Langkilde, Magnus Petersson, John J.V. McMurray, Scott D. Solomon

Disclosures

- Trial Sponsor: The DELIVER trial was funded by AstraZeneca
- Presenter Disclosures: Dr. Mc Causland has received research grant support from NIH, Satellite Healthcare, Novartis, Lexicon, and Fifth Eye; consulting fees from GSK, Zydus Therapeutics; and expert witness fees from Rubin-Anders Scientific.

Does the initial eGFR decline with dapagliflozin have prognostic significance among patients in DELIVER?

- An initial decline in eGFR following initiation of SGLT2i has been observed across populations of patients with diabetes and CKD.
- Among patients with HFrEF in the DAPA-HF trial, an initial decline in eGFR>10% was associated with adverse outcomes in the placebo arm, but not in the dapagliflozin arm.
- We explored the association of an initial eGFR decline with cardiovascular and kidney outcomes among patients with heart failure with mildly reduced or preserved ejection fraction enrolled in DELIVER.

DELIVER Study Design

Randomized, double-blind, placebo-controlled trial testing the hypothesis that dapagliflozin would reduce cardiovascular death or worsening heart failure in patients with heart failure and mildly reduced or preserved ejection fraction

Eligibility Criteria

- Age ≥ 40 years
- NYHA class II-IV
- LVEF > 40% (including prior LVEF ≤ 40%)

- Structural Heart Disease (LVH or LA Enlargement)
- Elevated Natriuretic Peptides
 (> 300 pg/ml or 600 pg/ml in AFF)
- Either Ambulatory or Hospitalized for Heart Failure

Double-blind Treatment period

Dapagliflozin 10mg once daily

Event Driven (1117 estimated events)

eGFR measured at baseline, months 1, 4, 12, 24, & 36

Placebo

Solomon SD et al. Eur J Heart Fail 2022

Analytic approach

Definition of initial eGFR decline 'dip'

Change in eGFR from baseline to month 1 of >10% (vs. ≤10%) n=5,788 of the original 6,263 participants had available measurements

Primary Cardiovascular Outcome

Cardiovascular death or a worsening heart failure event (hospitalization or urgent visit)

Kidney Outcomes

Composite (post hoc)

- ≥50% decline in eGFR relative to the month 1
- End-stage kidney disease (AE reporting or decline in eGFR to <15 ml/min/1.73m²)
- Death due to kidney causes

Change in eGFR through month 36 (prespecified exploratory)

<u>Models</u>

Time to event: Cox regression, landmarked at month 1, stratified by diabetes

eGFR slope: Mixed effects regression models, starting at month 4

Adjustment: Age, sex, race, eGFR, BMI, hypertension, LVEF, log-NT-proBNP, SBP,

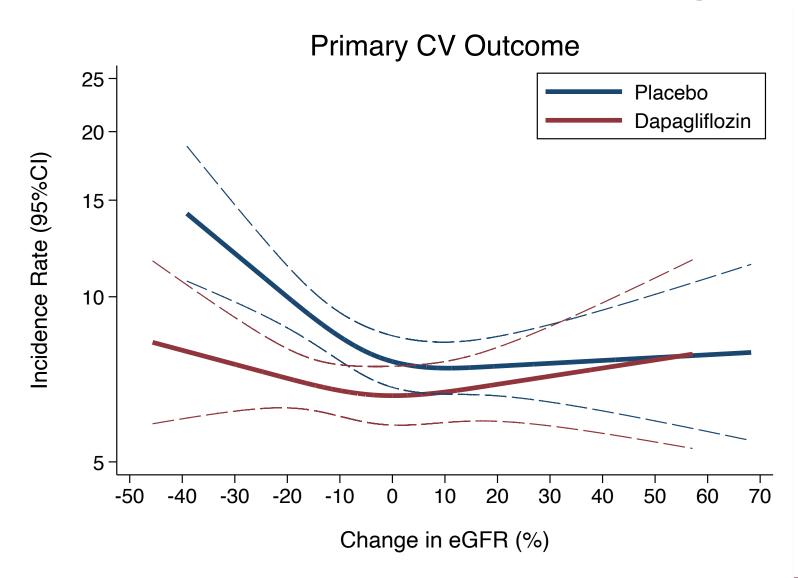
SBP change from baseline to month 1, MRA, ACEi/ARB

Baseline characteristics according to initial eGFR decline

Characteristic	eGFR Decline <0%	eGFR Decline 0 to 10%	eGFR Decline >10%	P-trend	
	(n=2,408)	(n=1,499)	(n=1,881)	i diciid	
Age, yrs	71 ±10	71 ±10	72 ±9	0.04	
Female, no. (%)	1072 (45)	603 (40)	860 (46)	0.56	
Race, no. (%)				0.26	
White	1685 (70)	1023 (68)	1360 (72)		
Asian	533 (22)	340 (23)	352 (19)		
Black or African American	51 (2)	41 (3)	50 (3)		
American Indian or Alaska Native	72 (3)	50 (3)	49 (3)		
Other	67 (3)	45 (3)	70 (4)		
Systolic blood pressure, mmHg	128 ±15	128 ±16	129 ±16	0.02	
Body-mass index	29.6 ±6.0	29.7 ±6.0	30.2 ±6.3	0.003	
Serum creatinine, mg/dL	1.2 ±0.4	1.1 ±0.3	1.1 ±0.3	< 0.001	
eGFR, mL/min/1.73 m ²	58 ±19	66 ±20	61 ±18	< 0.001	
Left ventricular ejection fraction, %	54 ±9	54 ±9	55 ±9	0.03	
NT-proBNP [Q1, Q3], pg/mL	1007	972	1022	0.54	
	[627, 1741]	[599, 1619]	[637, 1800]	0.54	
Diabetes, no. (%)	1028 (43)	637 (42)	933 (50)	<0.001	

Baseline medications according to initial eGFR decline

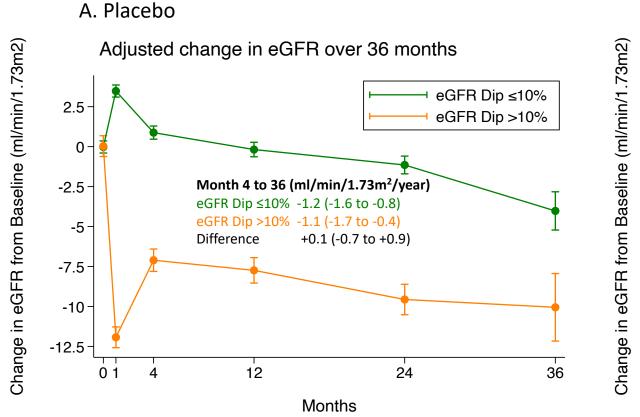
Characteristic	eGFR Decline eGFR Decline				
	<0%	0 to 10%	>10%	P-trend	
	(n=2,408)	(n=1,499)	(n=1,881)		
Loop diuretic, n(%)	1870 (78)	1089 (73)	1478 (79)	0.66	
ACE inhibitor or ARB, n(%)	1719 (71)	1114 (74)	1393 (74)	0.04	
Mineralocorticoid-receptor	1034 (43)	631 (42)	825 (44)	0.58	
antagonist, n(%)					
Beta-blocker, n(%)	1985 (82)	1220 (81)	1578 (84)	0.25	
ARNI, n(%)	113 (5)	81 (5)	83 (4)	0.73	
Randomized to dapagliflozin, n(%)	977 (41)	771 (51)	1144 (61)	< 0.001	

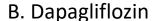


Cardiovascular Composite Outcome

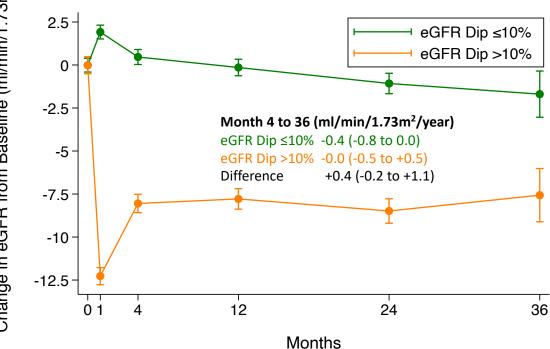
	Placebo No. events/No. patients (%)		Dapagliflozin No. events/No. patients (%)		Placebo	Dapa	
	No Dip	Dip	No Dip	Dip	Adjusted HR (95% CI)	Adjusted HR (95% CI)	P-int
eGFR dip >10%	357/2,140 (17)	156/720 (22)	274/1,739 (16)	175/1,135 (15)	1.33 (1.10, 1.62)	0.90 (0.74, 1.09)	0.01

Adjusted incidence rates of the primary outcome according to eGFR decline and treatment assignment


Kidney	Com	posite	Outco	ome


		Placebo Dapagi vents/No. patients (%) No. events/No			Placebo	Dapa	
	No Dip	Dip	No Dip	Dip	Adjusted HR (95% CI)	Adjusted HR (95% CI)	P-int
eGFR dip >10%	38/2,150 (1.8)	17/734 (2.3)	23/1,744 (1.3)	15/1,143 (1.3)	1.62 (0.90, 2.89)	0.94 (0.49, 1.82)	0.35

Change in eGFR over time, according to an initial



Conclusions

- Among patients with heart failure with mildly reduced or impaired ejection fraction treated with dapagliflozin, an initial eGFR decline was relatively frequent, but was not associated with subsequent risk of adverse cardiovascular or kidney events.
- These data reinforce clinical guidance that SGLT2i should not be interrupted or discontinued in response to an initial eGFR decline.

Steering Committee

Scott D. Solomon, MD & John J.V. McMurray, MD, Co-Chairs

Rudolf A. de Boer, MD, David DeMets, PHD, Silvio E. Inzucchi, MD, Mikhail N. Kosiborod, MD, Carolyn S.P. Lam, MD, Felipe Martinez, MD, Sanjiv J. Shah, MD

Sponsor Leadership AstraZeneca

Anna Maria Langkilde, MD, PhD, Magnus Petersson, MD, PhD, Daniel Lindholm, MD, PhD, Ulrica Wilderäng, PhD, Olof Bengtsson, PhLic, Ann Nilsson, Barbara Kucharczuk-Filipek

Clinical Events Committee

Akshay Desai, MD, Pardeep Jhund, MD (Chairs)

Peter Finn, MD, Abdel Brahimi, MD, Martina McGrath, MD, Ebrahim Barkoudah, MD, Finnian Mc Causland, MD, Eugene Connolly, MD, Ninian Lang, MD, Mark Petrie, MD

BWH Statistical Team

Brian Claggett, PhD, Muthiah Vaduganathan, MD, Ian Kulac, Zi Michael Miao

Data Safety Monitoring Committee

Marc Pfeffer, MD, PhD (Chair)

Stuart Pocock, PhD, Karl Swedberg, MD, Jean L. Rouleau, MD, Nish Chaturvedi, MD, Peter Ivanovich, MD, Andrew Levey, MD

National Lead Investigators

Adrian Hernandez (Lead National Lead Investigator)

Argentina, Jorge Thierer
Belgium, Stefan P. Janssens,
Brazil, Jose Francisco Kerr Saraiva
Bulgaria, Tzvetana Katova
Canada, Eileen O'Meara
Canada, Subodh Verma
China, Yaling Han
Czech Rep, Jan Belohlavek
Hungary, Béla Merkely
Japan, Masafumi Kitakaze
Mexico, Marco Antonio Alcocer Gamba

Netherlands, C. Jan Willem Borleffs Peru, Jose Walter Cabrera Honorio Poland, Jaroslaw Drozdz Romania, Dan Dobreanu Russia, Sergey N. Tereshchenko Saudi Arabia, Waleed Al Habeeb, Spain, Josep Comin-Colet Taiwan, Chern-En Chiang USA, Jim Fang USA, Orly Vardeny Vietnam, Pham Nguyen Vinh

We thank all the DELIVER Investigators and participants!